TY - JOUR
T1 - The road from systems biology to systems medicine
AU - Wolkenhauer, Olaf
AU - Auffray, Charles
AU - Jaster, Robert
AU - Steinhoff, Gustav
AU - Dammann, Olaf
PY - 2013/4
Y1 - 2013/4
N2 - As research institutions prepare roadmaps for "systems medicine," we ask how this differs from applications of systems biology approaches in medicine and what we (should) have learned from about one decade of funding in systems biology. After surveying the area, we conclude that systems medicine is the logical next step and necessary extension of systems biology, and we focus on clinically relevant applications. We specifically discuss three related notions. First, more interdisciplinary collaborations are needed to face the challenges of integrating basic research and clinical practice: integration, analysis, and interpretation of clinical and nonclinical data for diagnosis, prognosis, and therapy require advanced statistical, computational, and mathematical tools. Second, strategies are required to (i) develop and maintain computational platforms for the integration of clinical and nonclinical data, (ii) further develop technologies for quantitative and time-resolved tracking of changes in gene expression, cell signaling, and metabolism in relation to environmental and lifestyle influences, and (iii) develop methodologies for mathematical and statistical analyses of integrated data sets and multilevel models. Third, interdisciplinary collaborations represent a major challenge and are difficult to implement. For an efficient and successful initiation of interdisciplinary systems medicine programs, we argue that epistemological, ontological, and sociological aspects require attention.
AB - As research institutions prepare roadmaps for "systems medicine," we ask how this differs from applications of systems biology approaches in medicine and what we (should) have learned from about one decade of funding in systems biology. After surveying the area, we conclude that systems medicine is the logical next step and necessary extension of systems biology, and we focus on clinically relevant applications. We specifically discuss three related notions. First, more interdisciplinary collaborations are needed to face the challenges of integrating basic research and clinical practice: integration, analysis, and interpretation of clinical and nonclinical data for diagnosis, prognosis, and therapy require advanced statistical, computational, and mathematical tools. Second, strategies are required to (i) develop and maintain computational platforms for the integration of clinical and nonclinical data, (ii) further develop technologies for quantitative and time-resolved tracking of changes in gene expression, cell signaling, and metabolism in relation to environmental and lifestyle influences, and (iii) develop methodologies for mathematical and statistical analyses of integrated data sets and multilevel models. Third, interdisciplinary collaborations represent a major challenge and are difficult to implement. For an efficient and successful initiation of interdisciplinary systems medicine programs, we argue that epistemological, ontological, and sociological aspects require attention.
UR - https://www.scopus.com/pages/publications/84877329448
U2 - 10.1038/pr.2013.4
DO - 10.1038/pr.2013.4
M3 - Review article / Perspectives
C2 - 23314297
AN - SCOPUS:84877329448
SN - 0031-3998
VL - 73
SP - 502
EP - 507
JO - Pediatric Research
JF - Pediatric Research
IS - 4-2
ER -