TY - JOUR
T1 - TCGADownloadHelper
T2 - simplifying TCGA data extraction and preprocessing
AU - Baumann, Alexandra Anke
AU - Wolkenhauer, Olaf
AU - Wolfien, Markus
N1 - Publisher Copyright:
Copyright © 2025 Baumann, Wolkenhauer and Wolfien.
PY - 2025
Y1 - 2025
N2 - The Cancer Genome Atlas (TCGA) provides comprehensive genomic data across various cancer types. However, complex file naming conventions and the necessity of linking disparate data types to individual case IDs can be challenging for first-time users. While other tools have been introduced to facilitate TCGA data handling, they lack a straightforward combination of all required steps. To address this, we developed a streamlined pipeline using the Genomic Data Commons (GDC) portal’s cart system for file selection and the GDC Data Transfer Tool for data downloads. We use the Sample Sheet provided by the GDC portal to replace the default 36-character opaque file IDs and filenames with human-readable case IDs. We developed a pipeline integrating customizable Python scripts in a Jupyter Notebook and a Snakemake pipeline for ID mapping along with automating data preprocessing tasks (https://github.com/alex-baumann-ur/TCGADownloadHelper). Our pipeline simplifies the data download process by modifying manifest files to focus on specific subsets, facilitating the handling of multimodal data sets related to single patients. The pipeline essentially reduced the effort required to preprocess data. Overall, this pipeline enables researchers to efficiently navigate the complexities of TCGA data extraction and preprocessing. By establishing a clear step-by-step approach, we provide a streamlined methodology that minimizes errors, enhances data usability, and supports the broader utilization of TCGA data in cancer research. It is particularly beneficial for researchers new to genomic data analysis, offering them a practical framework prior to conducting their TCGA studies.
AB - The Cancer Genome Atlas (TCGA) provides comprehensive genomic data across various cancer types. However, complex file naming conventions and the necessity of linking disparate data types to individual case IDs can be challenging for first-time users. While other tools have been introduced to facilitate TCGA data handling, they lack a straightforward combination of all required steps. To address this, we developed a streamlined pipeline using the Genomic Data Commons (GDC) portal’s cart system for file selection and the GDC Data Transfer Tool for data downloads. We use the Sample Sheet provided by the GDC portal to replace the default 36-character opaque file IDs and filenames with human-readable case IDs. We developed a pipeline integrating customizable Python scripts in a Jupyter Notebook and a Snakemake pipeline for ID mapping along with automating data preprocessing tasks (https://github.com/alex-baumann-ur/TCGADownloadHelper). Our pipeline simplifies the data download process by modifying manifest files to focus on specific subsets, facilitating the handling of multimodal data sets related to single patients. The pipeline essentially reduced the effort required to preprocess data. Overall, this pipeline enables researchers to efficiently navigate the complexities of TCGA data extraction and preprocessing. By establishing a clear step-by-step approach, we provide a streamlined methodology that minimizes errors, enhances data usability, and supports the broader utilization of TCGA data in cancer research. It is particularly beneficial for researchers new to genomic data analysis, offering them a practical framework prior to conducting their TCGA studies.
KW - genomic data commons (GDC) portal
KW - Jupyter Notebook
KW - lung cancer
KW - sample preprocessing
KW - the cancer genome atlas (TCGA)
UR - https://www.scopus.com/pages/publications/105005286710
U2 - 10.3389/fgene.2025.1569290
DO - 10.3389/fgene.2025.1569290
M3 - Article
AN - SCOPUS:105005286710
SN - 1664-8021
VL - 16
JO - Frontiers in Genetics
JF - Frontiers in Genetics
M1 - 1569290
ER -