TY - JOUR
T1 - Characterization of Bitter Compounds via Modulation of Proton Secretion in Human Gastric Parietal Cells in Culture
AU - Liszt, Kathrin I.
AU - Hans, Joachim
AU - Ley, Jakob P.
AU - Köck, Elke
AU - Somoza, Veronika
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2018/3/14
Y1 - 2018/3/14
N2 - Humans perceive bitterness via around 25 different bitter receptors. Therefore, the identification of antagonists remains a complex challenge. We previously demonstrated several bitter-tasting compounds such as caffeine to induce acid secretion in the stomach and in a human gastric tumor cell line (HGT-1). Here, the results of a fluorescent-based in vitro assay using HGT-1 cells and a human sensory panel testing nine selected potential bitter modulators, with or without the bitter compounds caffeine or theobromine, were compared. Of the bitter-modulating compounds tested, eriodictyol, matairesinol, enterolacton, lariciresinol, and homoeriodictyol reduced the effect of caffeine on proton secretion by -163 ± 14.0, -152 ± 12.4, -74 ± 16.4, -58 ± 7.2, and -44.6 ± 16.5%, respectively, and reduced the bitter intensity of caffeine in the human sensory panel. In contrast, naringenin and 5,7-dihydroxy-4(4-hydroxyphenyl)chroman-2-one neither reduced the caffeine-induced proton secretion in HGT-1 cells nor showed an effect on bitter intensity perceived by the sensory panel. Results for theobromine were not as pronounced as those for caffeine, but followed a similar trend. The results demonstrate that the HGT-1 in vitro assay is a useful tool to identify potential bitter-masking compounds. Nevertheless, a sensory human panel is necessary to quantify the bitter-masking potency.
AB - Humans perceive bitterness via around 25 different bitter receptors. Therefore, the identification of antagonists remains a complex challenge. We previously demonstrated several bitter-tasting compounds such as caffeine to induce acid secretion in the stomach and in a human gastric tumor cell line (HGT-1). Here, the results of a fluorescent-based in vitro assay using HGT-1 cells and a human sensory panel testing nine selected potential bitter modulators, with or without the bitter compounds caffeine or theobromine, were compared. Of the bitter-modulating compounds tested, eriodictyol, matairesinol, enterolacton, lariciresinol, and homoeriodictyol reduced the effect of caffeine on proton secretion by -163 ± 14.0, -152 ± 12.4, -74 ± 16.4, -58 ± 7.2, and -44.6 ± 16.5%, respectively, and reduced the bitter intensity of caffeine in the human sensory panel. In contrast, naringenin and 5,7-dihydroxy-4(4-hydroxyphenyl)chroman-2-one neither reduced the caffeine-induced proton secretion in HGT-1 cells nor showed an effect on bitter intensity perceived by the sensory panel. Results for theobromine were not as pronounced as those for caffeine, but followed a similar trend. The results demonstrate that the HGT-1 in vitro assay is a useful tool to identify potential bitter-masking compounds. Nevertheless, a sensory human panel is necessary to quantify the bitter-masking potency.
KW - HGT-1 cells
KW - TAS2Rs
KW - bitter masking
KW - bitter modulators
KW - bitter tastants
UR - https://www.scopus.com/pages/publications/85043786856
U2 - 10.1021/acs.jafc.7b01051
DO - 10.1021/acs.jafc.7b01051
M3 - Article
C2 - 28525714
AN - SCOPUS:85043786856
SN - 0021-8561
VL - 66
SP - 2295
EP - 2300
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
IS - 10
ER -