Modelling gene expression time-series with radial basis function neural networks

Caria S. Möller-Levet*, Hujun Yin, Kwang Hyun Cho, Olaf Wolkenhauer

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

Gene expression time-series are discrete, noisy, short and usually unevenly sampled. Most existing methods used to compare expression profiles operate directly on the time points. While modelling the profiles can lead to more generalised, smooth characterisation of gene expressions. In this paper a Radial Basis Function neural network is employed to model gene expression time-series. The Orthogonal Least Square method, used for selection of centres, is further combined with a width optimisation scheme. The experiments on a number of expression datasets have shown the advantages of the approach in terms of generalisation and approximation. The results on known datasets have indeed coincided with biological interpretations.

OriginalspracheEnglisch
Titel2004 IEEE International Joint Conference on Neural Networks - Proceedings
Seiten1191-1195
Seitenumfang5
DOIs
PublikationsstatusVeröffentlicht - 2004
Extern publiziertJa
Veranstaltung2004 IEEE International Joint Conference on Neural Networks - Proceedings - Budapest, Ungarn
Dauer: 25 Juli 200429 Juli 2004

Publikationsreihe

NameIEEE International Conference on Neural Networks - Conference Proceedings
Band2
ISSN (Print)1098-7576

Konferenz

Konferenz2004 IEEE International Joint Conference on Neural Networks - Proceedings
Land/GebietUngarn
StadtBudapest
Zeitraum25/07/0429/07/04

Fingerprint

Untersuchen Sie die Forschungsthemen von „Modelling gene expression time-series with radial basis function neural networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren